GIF89a=( �' 7IAXKgNgYvYx\%wh&h}t�h%�s%x�}9�R��&�0%� (�.��5�SD��&�a)�x5��;ͣ*ȡ&ղ)ׯ7׵<ѻ4�3�H֧KͯT��Y�aq��q��F� !� ' !� NETSCAPE2.0 , =( ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g���E�������R���E����B�� ��ȸ��D���"�Ů� �H��L��D٫D�B�����D���T���H �G��A R�ڐ |�� ٭&��E8�S�kG�A�px�a��� R2XB��E8I���6X�:vT)�~��q�賥��"F~%x� � 4#Z�0O|-4Bs�X:= Q� Sal��yXJ`GȦ|s h��K3l7�B|�$'7Jީܪ0!��D�n=�P� ����0`�R�lj����v>���5 �.69�ϸd�����nlv�9��f{���Pbx �l5}�p� ��� �3a���I�O����!ܾ���i��9��#��)p�a ޽ �{�)vm��%D~ 6f��s}Œ�D�W E�`!� �&L8x� �ܝ{)x`X/>�}m��R�*|`D�=�_ ^�5 !_&'a�O�7�c��`DCx`�¥�9�Y�F���`?��"� �n@`�} lď��@4>�d S �v�xN��"@~d��=�g�s~G��� ���ud &p8Q�)ƫlXD����A~H�ySun�j���k*D�LH�] ��C"J��Xb~ʪwSt}6K,��q�S:9ت:���l�@�`�� �.۬�t9�S�[:��=`9N����{¿�A !R�:���6��x�0�_ �;������^���#����!����U���;0L1�����p% A��U̬ݵ��%�S��!���~`�G���� ���=4�np�3���������u�u�ٮ|%2�I��r�#0��J``8�@S@5� ���^`8E�]�.�S���7 � �0�j S�D� z���i�S�����!���l��w9*�D�I�nEX��� &A�Go�Qf��F��;���}�J����F5��Q|���X��T��y���]� o ��C=��:���PB@ D׽S�(>�C�x}`��xJЬ�۠��p+eE0`�}`A �/NE�� �9@��� H�7�!%B0`�l*��!8 2�%� �:�1�0E��ux%nP1�!�C)�P81l�ɸF#Ƭ{����B0>�� �b�`��O3��()yRpb��E.ZD8�H@% �Rx+%���c� ���f��b�d�`F�"8�XH"��-�|1�6iI, 2�$+](A*j� QT�o0.�U�`�R�}`�SN����yae�����b��o~ S)�y�@��3 �tT�0�&�+~L�f"�-|�~��>!�v��~�\Q1)}@�}h#aP72�"�$ !� " , =( &7IAXG]KgNgYvYxR"k\%w]'}h}t�h%�g+�s%r.m3ax3�x�}9��&��+�!7�0%� (�.�SD��&��;�"&ײ)׻4��6�K� �@pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E �� �������E �´��C���ǶR��D��"Ʒ�ʱH��M��GڬD�B����D��T����G���C�C� l&�~:'�tU�6ɹ#��)�'�.6�&��Ȼ K(8p0N�?!�2"��NIJX>R��OM '��2�*x�>#n� �@<[:�I�f ��T���Cdb��[�}E�5MBo��@�`@��tW-3 �x�B���jI�&E�9[T&$��ﯧ&"s��ȳ����dc�UUρ#���ldj?����`\}���u|3'�R]�6 �S#�!�FKL�*N E���`$�:e�YD�q�.�촁�s \-�jA 9�����-��M[�x(�s��x�|���p��}k�T�DpE@W� ��]k`1� ���Yb ��0l��*n0��"~zBd�~u�7�0Bl��0-�x~|U�U0 �h�*HS�|��e"#"?vp�i`e6^�+q��`m8 #V�� ��VS|`��"m"сSn|@:U���~`pb�G�ED����2F�I�? >�x� R� ��%~jx��<�a�9ij�2�D��&: Z`�]w���:�6��B�7eFJ|�ҧ�,���FǮcS�ʶ+B�,�ܺN���>PAD�HD��~���n��}�#�� Q��S���2�X�{�k�lQ�2�����w�|2� h9��G�,m���3��6-��E�L��I�³*K���q�`DwV�QXS��peS��� qܧTS����R�u �<�a�*At�lmE� � ��N[P1�ۦ��$��@`��Dpy�yXvCAy�B`}D� 0QwG#� �a[^�� $���Ǧ{L�"[��K�g�;�S~��GX.�goT.��ư��x���?1z��x~:�g�|�L� ��S`��0S]P�^p F<""�?!,�!N4&P� ����:T�@h�9%t��:�-~�I<`�9p I&.)^ 40D#p@�j4�ج:�01��rܼF2oW�#Z ;$Q q  �K��Nl#29 !F@�Bh�ᏬL!XF�LHKh�.�hE&J�G��<"WN!�����Y@� >R~19J"�2,/ &.GXB%�R�9B6�W]���W�I�$��9�RE8Y� ��"�A5�Q.axB�&ة�J�! �t)K%tS-�JF b�NMxL��)�R��"���6O!TH�H� 0 !� ) , =( &AXKgNgYvYxR"k\%wh&h}h%�g+�s%r.x3�x�}9��&��+�R,�!7�0%� (�.��5��&�a)��;�"&ף*Ȳ)ׯ7׻4�3��6�H֧KͻH�T��Y��q��h� ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E$����� � ����$E$��"��D� � ������R��C��� E ��H�M��G�D� �B��ϾD��a��`1r��Ӑ�� �o~�zU!L�C'�yW�UGt����ll�0���uG�)A�s[��x� �xO%��X2�  P�n:R/��aHae+�Dm?# ǣ6�8�J�x�Di�M���j���5oQ7�- <! *�l��R2r/a!l)d� A"�E���� &� ;��c �%����b��pe~C"B���H�eF2��`8qb�t_`ur`e� w�u3��Pv�h""�`�Íx�LĹ��3� �~ֺ�:���MDfJ� �۵�W�%�S�X �؁)�@��:E��w�u�Sxb8y\m�zS��Zb�E�L��w!y(>�"w�=�|��s�d �C�W)H�cC$�L �7r.�\{)@�`@ �X�$PD `aaG:���O�72E�amn]�"Rc�x�R� &dR8`g��i�xLR!�P &d����T���i�|�_ � Qi�#�`g:��:noM� :V �)p����W&a=�e�k� j���1߲s�x�W�jal|0��B0�, \j۴:6���C ��W��|��9���zĸV {�;��n��V�m�I��.��PN� ����C��+��By�ѾHŸ:��� 7�Y�FTk�SaoaY$D�S���29R�kt� ��f� ��:��Sp�3�I��DZ� �9���g��u�*3)O��[_hv ,���Et x�BH� �[��64M@�S�M7d�l�ܶ5-��U܍��z�R3Ԭ3~ ��P��5�g: ���kN�&0�j4���#{��3S�2�K�'ợl���2K{� {۶?~m𸧠�I�nE�='����^���_�=��~�#O���'���o..�Y�n��CSO��a��K��o,���b�����{�C�� "�{�K ��w��Ozdը�:$ ���v�] A#� ���a�z)Rx׿ƥ�d``�w-�y�f�K!����|��P��=�`�(f��'Pa ��BJa%��f�%`�}F����6>��`G"�}�=�!o`�^FP�ةQ�C���`(�}\�ݮ ��$<��n@dĠE#��U�I�!� #l��9`k���'Rr��Z�NB�MF �[�+9���-�wj���8�r� ,V�h"�|�S=�G_��"E� 0i*%̲��da0mVk�):;&6p>�jK ��# �D�:�c?:R Ӭf��I-�"�<�="��7�3S��c2RW ,�8(T"P0F¡Jh�" ; 403WebShell
403Webshell
Server IP : 81.88.48.95  /  Your IP : 10.2.217.94, 216.73.216.227
Web Server : Apache
System : Linux opus14 3.2.0-4-amd64 #1 SMP Debian 3.2.68-1+deb7u3 x86_64
User : nobody ( 99)
PHP Version : 5.3.3-7+squeeze3
Disable Function : NONE
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /usr/lib/ruby/1.8/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/lib/ruby/1.8//rational.rb
#
#   rational.rb -
#       $Release Version: 0.5 $
#       $Revision: 1.7 $
#       $Date: 1999/08/24 12:49:28 $
#       by Keiju ISHITSUKA(SHL Japan Inc.)
#
# Documentation by Kevin Jackson and Gavin Sinclair.
# 
# When you <tt>require 'rational'</tt>, all interactions between numbers
# potentially return a rational result.  For example:
#
#   1.quo(2)              # -> 0.5
#   require 'rational'
#   1.quo(2)              # -> Rational(1,2)
# 
# See Rational for full documentation.
#


#
# Creates a Rational number (i.e. a fraction).  +a+ and +b+ should be Integers:
# 
#   Rational(1,3)           # -> 1/3
#
# Note: trying to construct a Rational with floating point or real values
# produces errors:
#
#   Rational(1.1, 2.3)      # -> NoMethodError
#
def Rational(a, b = 1)
  if a.kind_of?(Rational) && b == 1
    a
  else
    Rational.reduce(a, b)
  end
end

#
# Rational implements a rational class for numbers.
#
# <em>A rational number is a number that can be expressed as a fraction p/q
# where p and q are integers and q != 0.  A rational number p/q is said to have
# numerator p and denominator q.  Numbers that are not rational are called
# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
#
# To create a Rational Number:
#   Rational(a,b)             # -> a/b
#   Rational.new!(a,b)        # -> a/b
#
# Examples:
#   Rational(5,6)             # -> 5/6
#   Rational(5)               # -> 5/1
# 
# Rational numbers are reduced to their lowest terms:
#   Rational(6,10)            # -> 3/5
#
# But not if you use the unusual method "new!":
#   Rational.new!(6,10)       # -> 6/10
#
# Division by zero is obviously not allowed:
#   Rational(3,0)             # -> ZeroDivisionError
#
class Rational < Numeric
  @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'

  #
  # Reduces the given numerator and denominator to their lowest terms.  Use
  # Rational() instead.
  #
  def Rational.reduce(num, den = 1)
    raise ZeroDivisionError, "denominator is zero" if den == 0

    if den < 0
      num = -num
      den = -den
    end
    gcd = num.gcd(den)
    num = num.div(gcd)
    den = den.div(gcd)
    if den == 1 && defined?(Unify)
      num
    else
      new!(num, den)
    end
  end

  #
  # Implements the constructor.  This method does not reduce to lowest terms or
  # check for division by zero.  Therefore #Rational() should be preferred in
  # normal use.
  #
  def Rational.new!(num, den = 1)
    new(num, den)
  end

  private_class_method :new

  #
  # This method is actually private.
  #
  def initialize(num, den)
    if den < 0
      num = -num
      den = -den
    end
    if num.kind_of?(Integer) and den.kind_of?(Integer)
      @numerator = num
      @denominator = den
    else
      @numerator = num.to_i
      @denominator = den.to_i
    end
  end

  #
  # Returns the addition of this value and +a+.
  #
  # Examples:
  #   r = Rational(3,4)      # -> Rational(3,4)
  #   r + 1                  # -> Rational(7,4)
  #   r + 0.5                # -> 1.25
  #
  def + (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      num_a = a.numerator * @denominator
      Rational(num + num_a, @denominator * a.denominator)
    elsif a.kind_of?(Integer)
      self + Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) + a
    else
      x, y = a.coerce(self)
      x + y
    end
  end

  #
  # Returns the difference of this value and +a+.
  # subtracted.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r - 1                # -> Rational(-1,4)
  #   r - 0.5              # -> 0.25
  #
  def - (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      num_a = a.numerator * @denominator
      Rational(num - num_a, @denominator*a.denominator)
    elsif a.kind_of?(Integer)
      self - Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) - a
    else
      x, y = a.coerce(self)
      x - y
    end
  end

  #
  # Returns the product of this value and +a+.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r * 2                # -> Rational(3,2)
  #   r * 4                # -> Rational(3,1)
  #   r * 0.5              # -> 0.375
  #   r * Rational(1,2)    # -> Rational(3,8)
  #
  def * (a)
    if a.kind_of?(Rational)
      num = @numerator * a.numerator
      den = @denominator * a.denominator
      Rational(num, den)
    elsif a.kind_of?(Integer)
      self * Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) * a
    else
      x, y = a.coerce(self)
      x * y
    end
  end

  #
  # Returns the quotient of this value and +a+.
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r / 2                # -> Rational(3,8)
  #   r / 2.0              # -> 0.375
  #   r / Rational(1,2)    # -> Rational(3,2)
  #
  def / (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      den = @denominator * a.numerator
      Rational(num, den)
    elsif a.kind_of?(Integer)
      raise ZeroDivisionError, "division by zero" if a == 0
      self / Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) / a
    else
      x, y = a.coerce(self)
      x / y
    end
  end

  #
  # Returns this value raised to the given power.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r ** 2               # -> Rational(9,16)
  #   r ** 2.0             # -> 0.5625
  #   r ** Rational(1,2)   # -> 0.866025403784439
  #
  def ** (other)
    if other.kind_of?(Rational)
      Float(self) ** other
    elsif other.kind_of?(Integer)
      if other > 0
	num = @numerator ** other
	den = @denominator ** other
      elsif other < 0
	num = @denominator ** -other
	den = @numerator ** -other
      elsif other == 0
	num = 1
	den = 1
      end
      Rational.new!(num, den)
    elsif other.kind_of?(Float)
      Float(self) ** other
    else
      x, y = other.coerce(self)
      x ** y
    end
  end

  def div(other)
    (self / other).floor
  end

  #
  # Returns the remainder when this value is divided by +other+.
  #
  # Examples:
  #   r = Rational(7,4)    # -> Rational(7,4)
  #   r % Rational(1,2)    # -> Rational(1,4)
  #   r % 1                # -> Rational(3,4)
  #   r % Rational(1,7)    # -> Rational(1,28)
  #   r % 0.26             # -> 0.19
  #
  def % (other)
    value = (self / other).floor
    return self - other * value
  end

  #
  # Returns the quotient _and_ remainder.
  #
  # Examples:
  #   r = Rational(7,4)        # -> Rational(7,4)
  #   r.divmod Rational(1,2)   # -> [3, Rational(1,4)]
  #
  def divmod(other)
    value = (self / other).floor
    return value, self - other * value
  end

  #
  # Returns the absolute value.
  #
  def abs
    if @numerator > 0
      self
    else
      Rational.new!(-@numerator, @denominator)
    end
  end

  #
  # Returns +true+ iff this value is numerically equal to +other+.
  #
  # But beware:
  #   Rational(1,2) == Rational(4,8)          # -> true
  #   Rational(1,2) == Rational.new!(4,8)     # -> false
  #
  # Don't use Rational.new!
  #
  def == (other)
    if other.kind_of?(Rational)
      @numerator == other.numerator and @denominator == other.denominator
    elsif other.kind_of?(Integer)
      self == Rational.new!(other, 1)
    elsif other.kind_of?(Float)
      Float(self) == other
    else
      other == self
    end
  end

  #
  # Standard comparison operator.
  #
  def <=> (other)
    if other.kind_of?(Rational)
      num = @numerator * other.denominator
      num_a = other.numerator * @denominator
      v = num - num_a
      if v > 0
	return 1
      elsif v < 0
	return  -1
      else
	return 0
      end
    elsif other.kind_of?(Integer)
      return self <=> Rational.new!(other, 1)
    elsif other.kind_of?(Float)
      return Float(self) <=> other
    elsif defined? other.coerce
      x, y = other.coerce(self)
      return x <=> y
    else
      return nil
    end
  end

  def coerce(other)
    if other.kind_of?(Float)
      return other, self.to_f
    elsif other.kind_of?(Integer)
      return Rational.new!(other, 1), self
    else
      super
    end
  end

  #
  # Converts the rational to an Integer.  Not the _nearest_ integer, the
  # truncated integer.  Study the following example carefully:
  #   Rational(+7,4).to_i             # -> 1
  #   Rational(-7,4).to_i             # -> -1
  #   (-1.75).to_i                    # -> -1
  #
  # In other words:
  #   Rational(-7,4) == -1.75                 # -> true
  #   Rational(-7,4).to_i == (-1.75).to_i     # -> true
  #


  def floor()
    @numerator.div(@denominator)
  end

  def ceil()
    -((-@numerator).div(@denominator))
  end

  def truncate()
    if @numerator < 0
      return -((-@numerator).div(@denominator))
    end
    @numerator.div(@denominator)
  end

  alias_method :to_i, :truncate

  def round()
    if @numerator < 0
      num = -@numerator
      num = num * 2 + @denominator
      den = @denominator * 2
      -(num.div(den))
    else
      num = @numerator * 2 + @denominator
      den = @denominator * 2
      num.div(den)
    end
  end

  #
  # Converts the rational to a Float.
  #
  def to_f
    @numerator.fdiv(@denominator)
  end

  #
  # Returns a string representation of the rational number.
  #
  # Example:
  #   Rational(3,4).to_s          #  "3/4"
  #   Rational(8).to_s            #  "8"
  #
  def to_s
    if @denominator == 1
      @numerator.to_s
    else
      @numerator.to_s+"/"+@denominator.to_s
    end
  end

  #
  # Returns +self+.
  #
  def to_r
    self
  end

  #
  # Returns a reconstructable string representation:
  #
  #   Rational(5,8).inspect     # -> "Rational(5, 8)"
  #
  def inspect
    sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
  end

  #
  # Returns a hash code for the object.
  #
  def hash
    @numerator.hash ^ @denominator.hash
  end

  attr :numerator
  attr :denominator

  private :initialize
end

class Integer
  #
  # In an integer, the value _is_ the numerator of its rational equivalent.
  # Therefore, this method returns +self+.
  #
  def numerator
    self
  end

  #
  # In an integer, the denominator is 1.  Therefore, this method returns 1.
  #
  def denominator
    1
  end

  #
  # Returns a Rational representation of this integer.
  #
  def to_r
    Rational(self, 1)
  end

  #
  # Returns the <em>greatest common denominator</em> of the two numbers (+self+
  # and +n+).
  #
  # Examples:
  #   72.gcd 168           # -> 24
  #   19.gcd 36            # -> 1
  #
  # The result is positive, no matter the sign of the arguments.
  #
  def gcd(other)
    min = self.abs
    max = other.abs
    while min > 0
      tmp = min
      min = max % min
      max = tmp
    end
    max
  end

  #
  # Returns the <em>lowest common multiple</em> (LCM) of the two arguments
  # (+self+ and +other+).
  #
  # Examples:
  #   6.lcm 7        # -> 42
  #   6.lcm 9        # -> 18
  #
  def lcm(other)
    if self.zero? or other.zero?
      0
    else
      (self.div(self.gcd(other)) * other).abs
    end
  end

  #
  # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
  # (+self+ and +other+).  This is more efficient than calculating them
  # separately.
  #
  # Example:
  #   6.gcdlcm 9     # -> [3, 18]
  #
  def gcdlcm(other)
    gcd = self.gcd(other)
    if self.zero? or other.zero?
      [gcd, 0]
    else
      [gcd, (self.div(gcd) * other).abs]
    end
  end
end

class Fixnum
  remove_method :quo

  # If Rational is defined, returns a Rational number instead of a Float.
  def quo(other)
    Rational.new!(self, 1) / other
  end
  alias rdiv quo

  # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
  def rpower (other)
    if other >= 0
      self.power!(other)
    else
      Rational.new!(self, 1)**other
    end
  end

end

class Bignum
  remove_method :quo

  # If Rational is defined, returns a Rational number instead of a Float.
  def quo(other)
    Rational.new!(self, 1) / other
  end
  alias rdiv quo

  # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
  def rpower (other)
    if other >= 0
      self.power!(other)
    else
      Rational.new!(self, 1)**other
    end
  end

end

unless defined? 1.power!
  class Fixnum
    alias power! **
    alias ** rpower
  end
  class Bignum
    alias power! **
    alias ** rpower
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit